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30

31 Abstract

32 Plant functional traits provide a link in process-based vegetation models between plant-

33 level physiology and ecosystem-level responses. Recent advances in physiological understanding 

34 and computational efficiency have allowed for the incorporation of plant hydraulic processes in 

35 large-scale vegetation models. However, a more mechanistic representation of water limitation 

36 that determines ecosystem responses to plant water stress necessitates a re-evaluation of trait-

37 based constraints for plant carbon allocation, particularly allocation to leaf area. In this review, 

38 we examine model representations of plant allocation to leaves, which is often empirically set by 

39 plant functional type-specific allometric relationships. We analyze the evolution of the 

40 representation of leaf allocation in models of different scales and complexities. We show the 

41 impacts of leaf allocation strategy on plant carbon uptake in the context of recent advancements 

42 in modeling hydraulic processes. Finally, we posit that deriving allometry from first principles 

43 using mechanistic hydraulic processes is possible and should become standard practice, rather 

44 than using prescribed allometries. The representation of allocation as an emergent property of 

45 scarce resource constraints is likely to be critical to representing how global change processes 

46 impact future ecosystem dynamics and carbon fluxes and may reduce the number of poorly 

47 constrained parameters in vegetation models.

48 Introduction

49 Forested regions around the globe represent ~363 Pg C (equivalent to ~170 ppm CO2 if 

50 released to the atmosphere) and sequester ~2.3 Pg C annually, or approximately 25% of annual 

51 anthropogenic carbon emissions (Bonan, 2008; Pan et al., 2011). Tree carbon allocation to leaf 

52 biomass, and the resultant ratio of leaf area (AL) relative to sapwood area (area of tree water 

53 transport tissue, AS) influences ecosystem carbon drawdown and water loss through the stomata. 

54 Leaf allocation is shaped both by intrinsic plant physiological traits (Bartlett, Scoffoni, & Sack, 

55 2012; Choat et al., 2012) and the local environment (Martinez-Vilalta et al., 2009; Mencuccini & 

56 Bonosi, 2001; Mencuccini & Grace, 1994). However, due to the elusive nature of the biological 

57 mechanisms underlying tree leaf allocation, vegetation models often determine AL using fixed 

58 coefficients or scaling laws. Uncertainty in leaf allocation strategy introduced using fixed 

59 coefficient or scaling law methods impacts AL projections, the ratio of AL:AS, and the sensitivity 

60 of vegetation productivity to environmental drivers.
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61 The objective of this review is to provide an overview of how leaf allocation strategy is 

62 represented in current state-of-the-art numerical vegetation models, how allocation impacts 

63 internal plant water stress, and ultimately how allocation is tied to predictions for terrestrial 

64 productivity. First, we discuss the theory, history and fundamental limitations of the use of 

65 allometric equations, which are a common technique used to standardize leaf biomass allocation 

66 estimates among species or plant functional groups. Second, we examine the different 

67 representations of plant carbon allocation to leaves in vegetation models ranging in scales and 

68 complexities from single plant models to ecosystem models and large-scale vegetation models. 

69 Third, we provide context on the role of leaf allocation in the physiology of plant water 

70 limitation. Fourth, we propose a way for moving forward with prognostic leaf allocation in large-

71 scale models to improve predictive abilities for plant productivity and water stress. We conclude 

72 with a discussion on how the plant hydraulics framework presented here can inform the global 

73 optimization problem of understanding allocation broadly in the presence of multiple limiting 

74 resources.

75

76 Allometric biomass equations: history & theory

77 The fields of forestry and ecology rely heavily on allometric regression equations, which 

78 relate tree size to plant biomass to quantify species-specific allocation strategies. Numerous 

79 species- and site-specific allometric regression models have been developed over the years, 

80 beginning in prevalence the 1960s, that document the relationships between tree size (often 

81 diameter at breast height, dbh, or diameter at tree base) and plant biomass components including 

82 total aboveground tree biomass, stem biomass, bark biomass, branch biomass, and leaf biomass 

83 (Baskerville, 1972; Chave et al., 2014; Jenkins, Chojnacky, Heath, & Birdsey, 2003; Ploton et 

84 al., 2016; Ter-Mikaelian & Korzukhin, 1997; Whittaker & Woodwell, 1968; Zianis, Muukkonen, 

85 Mäkipää, & Mencuccini, 2005). These equations are useful for many applications, however 

86 literature-reported single-species allometric regression model performance is often no better at 

87 predicting out-of-sample tree allometries than multi-species models because of the wide 

88 intraspecific variations in allocation due to local environmental conditions (Fayolle, Doucet, 

89 Gillet, Bourland, & Lejeune, 2013; Lines, Zavala, Purves, & Coomes, 2012). Indeed, it has been 

90 documented that the largest source of error in scaling from trees to forests biomass estimates is 

91 error associated with allometric model choice, rather than errors in tree measurement or sampling 
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92 uncertainty associated with plot size or composition (Chave et al., 2004). Further, general 

93 allometry equations perform particularly poorly when predicting local leaf or tree crown biomass 

94 (Bond-Lamberty, Wang, & Gower, 2002; Ploton et al., 2016), making allometric regression 

95 models inaccurate when determining tree allocation strategies to leaves, and consequently 

96 increasing tree AL:AS uncertainty in out-of-sample environmental conditions. Indeed, the need to 

97 use ‘local’ allometric equations or to validate equations locally has long been emphasized in the 

98 forestry literature (Ketterings, Coe, Van Noordwijk, Ambagau, & Palm, 2001).

99 Thus, a fundamental question arises: how much does leaf allocation (and AL:AS) vary 

100 within a species for trees of equivalent size? A recently published Biomass And Allometry 

101 Database (BAAD) for woody plants (Falster et al., 2015) provides initial insights and has strong 

102 potential for improving our understanding of the complexity of the underlying biotic and abiotic 

103 factors driving plant allocation. The BAAD is a compilation of individual-level allocation data 

104 from numerous previously-published studies that span thousands of individual woody plants, 

105 hundreds of species, and different growth environments around the globe. Though the number of 

106 observations with concurrent documentation of AL and AS for a given tree within the BAAD are 

107 relatively sparse (863 observations), assuming tree trunk basal area (BA) as proportional to AS 

108 (i.e. , where ) provides enough additional data for us to perform a synthesis 
���� ∝ ���� �� = �(

��ℎ
2 )

2

109 of 91 unique studies, comprising 9585 individuals, 338 species, 192 genera, and 81 families. In 

110 addition, BA presumably better reflects the biomechanical and hydraulic limits for AL, making 

111 this assumption mechanistically consistent with our framework relating AL:BA to AL:AS. 

112 We performed variance decomposition to determine the taxonomic scales of variation in 

113 AL:BA. We used linear mixed effects models for log . First, we built a model including a (
����)

114 fixed intercept, fixed effect for method of calculating AL:AS (directly from measurements of AS 

115 at DBH or basal height, indirectly from basal diameter or DBH), and nested random effects for 

116 family, genus, and species. We compared the size of the random effects’ variance parameters 

117 within-species (i.e. residual variance), within-genus, within-family, and between families and 

118 found that 50% of the observed variation in AL:BA across the BAAD database occurred within 

119 species (Fig. 1). We then included a fixed effect for log(tree height) for each plant species 

120 (because AS should theoretically increase more rapidly than AL with tree height, as resistance to 

121 flow increases with tree height). Based on the marginal R2 of the model with and without the 
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122 species-level height effect, we determined that roughly 3/5ths of the within-species variation 

123 (29% of the total variation in AL:BA) could be attributed to within-species variation related to 

124 tree size (Fig. 1, dashed line). Interestingly, within-species patterns of AL:BA versus height, 

125 while negative on average, varied enormously across species, both in strength and direction 

126 (Figs. S1-2).

127 The substantial within-species variation, even when controlling for tree size, stands in 

128 contrast to numerous other plant functional traits that are often included in vegetation models 

129 (Rosas et al., 2019). As an example, we performed an equivalent analysis on wood density 

130 (WD), a widely used plant functional trait. We leveraged the huge within-species variation in 

131 WD within BAAD combined with cross-species information from the Global Wood Density 

132 Database (Zanne et al., 2009). Our synthesis comprised of 217 unique studies, 19997 

133 measurements, 8486 species, 1694 genera, and 211 families. In contrast to AL:BA, the majority 

134 of the variation in WD occurred at large taxonomic scales (e.g. across plant families, Fig. 1). The 

135 strong intraspecific variation that is particularly apparent in AL:BA indicates that environment 

136 strongly influences AL:BA (~AL:AS), perhaps more so than many common species-specific 

137 functional traits. Thus, while allometric functions relating plant size to plant investment in leaves 

138 have existed for over half a century and are ubiquitous, the generality and out-of-sample 

139 applicability of these functions tends to be low, posing considerable challenges to the 

140 formulation of fixed trait-based allocation algorithms in mechanistic vegetation models. This 

141 strong intraspecific variation implies that AL:AS may need to be predicted from first principles, 

142 rather than prescribed as a functional trait.

143

144 Leaf allocation in mechanistic vegetation models

145 There are numerous empirical and optimization-based approaches to determining 

146 vegetation allocation that often vary with the spatial scope of the model due to computational 

147 costs and tradeoffs (Tables 1-3) (De Kauwe et al., 2014; Franklin et al., 2012; Walker et al., 

148 2014). In many vegetation models that run at large spatial scales or over long time periods, 

149 vegetation is represented in an aggregated manner analogous to a ‘big leaf’ in each grid cell due 

150 to the large computational costs associated with predicting long-term vegetation dynamics across 

151 the globe. In this class of vegetation model, allocation often follows an empirical approach where 

152 a fixed fraction of net primary productivity (NPP) is allocated to each of leaves, stem, and fine 
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153 roots (as well as other costs such as reproduction). This includes both models that are coupled to 

154 climate models such as the Community Land Model (CLM) family, as well as a number of 

155 models that have not been run coupled to climate models and are generally operated at scales 

156 smaller than the globe (Tables 1-2).

157 Another class of vegetation model, the ‘individual’- or ‘cohort-based’ model, resolves 

158 individual plants. Cohort-based vegetation models generally use allometric scaling functions 

159 from the forestry literature that relate model-predicted cohort dbh to tree stem, leaf, and root 

160 biomass using fixed relationships (see section on ‘Allometric biomass equations: history/theory’) 

161 (Tables 1-2). Thus, NPP partitioning to different tree tissues in cohort-based vegetation models is 

162 determined by fixed plant functional type (PFT)-specific parameters and tree size. Though 

163 computationally more intensive than the big leaf approach, cohort-based vegetation models are 

164 more skilled at capturing competition for light and vegetation demographic processes. Further, 

165 significant progress is being made towards incorporating cohort-based vegetation models in the 

166 next generation of coupled climate-vegetation models used for global-scale climate change 

167 projections (Fisher et al., 2018). 

168 Despite the fact that allocation to leaves and other organs in the fixed allocation approach 

169 is broadly constrained by PFT-specific fixed coefficients, the fixed coefficient representation of 

170 allocation does allow for limited allometric perturbations in response to environment. The 

171 representation of phenological processes are one such example of environmental responsiveness. 

172 In most fixed allocation vegetation models, deciduous PFTs allocate extra carbon resources to 

173 leaves at the beginning of the growing season to meet some target leaf biomass, and cease 

174 allocating carbon to leaves at the end of the growing season (though exact allocation fractions 

175 are model specific). Phenological responsiveness has been incorporated for both temperate and 

176 drought-deciduous ecosystems in a number of vegetation models. The representation of 

177 allocation to leaves in CLM4 and CLM5 is another such example, where the ratio of NPP going 

178 to leaves relative to stem is a function of previous year’s NPP such that, as vegetation 

179 productivity (NPP) increases, more carbon is allocated to wood relative to leaves (Table 2). A 

180 third example of environmental responsiveness that is present in numerous fixed allocation 

181 models occurs when respiratory costs exceed plant carbon gain. For example, in the Ecosystem 

182 Demography (ED) model family, target leaf biomass is fixed based on PFT and dbh. But, when 

183 respiration and leaf and root turnover exceed photosynthetic carbon gains, trees cannot allocate 
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184 to meet target leaf allometries due to environmental stress. Overall, these approaches have begun 

185 to incorporate simple environmental feedbacks on plant allometry. However, allocation schemes 

186 are generally limited to prescribed tissue ratios that are drawn from the allometric equation 

187 literature. Further, allocation is largely rooted in carbon-based allometries, and other ecologically 

188 relevant metrics that have been shown to be important in an ecosystem context such as leaf mass 

189 per area (Duursma & Falster, 2016; Falster, Duursma, & FitzJohn, 2018) are not often 

190 considered.

191 Because plant hydraulic processes are increasingly represented in both big leaf and 

192 cohort-based vegetation models that use a fixed allocation approach (see below), it is important 

193 to understand how fixed allocation and sub-hourly variations in water stress impact predictions 

194 of carbon and energy fluxes. The widespread fixed allocation approach of “growing the same 

195 tree everywhere” for a given model PFT is inconsistent with the huge forestry literature on the 

196 influence of site-conditions on leaf allocation (Bond-Lamberty et al., 2002; Fayolle et al., 2013; 

197 Jenkins et al., 2003; Ketterings et al., 2001; Ter-Mikaelian & Korzukhin, 1997), making it 

198 important to consider the impacts on estimates for global terrestrial productivity. 

199

200 The importance of leaf allocation for the physiology of vegetation water stress

201 Plant allocation to leaves, plant physiological traits, and local environmental conditions 

202 interact to affect water supply and demand and determine tree water status, gas exchange, and 

203 productivity. While water availability is set by climatic, hydrologic, and edaphic factors, tree 

204 water demand is determined in large part by plant morphology and leaf allocation. Water loss 

205 through AL must be matched by water flow through AS, giving the plant considerable agency 

206 over the flow of water through the soil-plant-atmosphere-continuum purely based on its relative 

207 allocation to evaporative (AL) versus solely conductive (AS) tissue area. Because water stress is 

208 the result of unmet plant water demand, allocation to AL is a major seasonal to multi-annual 

209 control over a plant’s exposure to water stress under limiting water supply. Further, water stress 

210 has important implications for plant productivity: If no other physiological changes occur, an 

211 over allocation of leaves, resulting in a large AL:AS, will cause stomatal closure to prevent 

212 excessive water loss, decrease intercellular CO2 (Ci), and decrease leaf-level photosynthesis. 

213 We illustrate the underlying plant physiological response to AL-driven changes in water 

214 demand with a fixed water supply using a simple tree model (the Hydraulic Optimization Theory 
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215 for Tree and Ecosystem Resilience or HOTTER model). HOTTER uses a single resistor to 

216 represent whole-plant hydraulic transport up to the substomatal cavity and a hydraulic 

217 optimization-based stomatal conductance model (Trugman, Detto, et al., 2018; Wolf, Anderegg, 

218 & Pacala, 2016) (Fig. 2). While the model contains some necessary simplifications, it is broadly 

219 consistent with the Ohm's law analogy for hydraulic elements in series and the observed 

220 responses of gas exchange to changes in leaf-specific hydraulic conductance (Hubbard, Ryan, 

221 Stiller, & Sperry, 2001; Sperry et al., 2016; Sperry, 2000). 

222 As illustrated by the HOTTER model, when a tree increases water demand via increases 

223 in AL, given fixed environmental and physiological conditions, the tree hydraulic conductance 

224 (K) per basal area increases to a maximum as more leaves are added and the percent whole tree 

225 resistance in leaves declines. Consequently, AL increases faster than K, leading to a monotonic 

226 decline in tree hydraulic conductance per AL and hence transpiration per AL. Stomatal closure 

227 reduces transpiration per AL in step with the reduction in hydraulic conductance per AL, thus 

228 maintaining an approximate homeostasis in leaf water potential. The stomatal control on leaf 

229 pressure helps avoid the costs of physiological damage due to water stress (Anderegg et al., 

230 2018; Wolf et al., 2016), but drives down leaf-level photosynthesis by limiting Ci (Fig. 2c). 

231 Additionally, at higher AL, self-shading further limits water and carbon fluxes. The reduction in 

232 photosynthesis per AL results in total tree photosynthesis (photosynthesis per leaf times AL) 

233 increasing less rapidly than the linear increase in the cost of leaf canopy construction and 

234 maintenance (respiration). Thus, there is an optimal AL:AS that maximizes the benefit of 

235 increased tree photosynthesis relative to canopy construction and respiratory cost (Fig. 2d-e). 

236 Critically, the optimal AL:AS is not fixed for a given set of plant hydraulic traits. Rather AL:AS 

237 depends on how local environmental conditions influence the cost-benefit ratio of growing AL: 

238 In drier climate conditions, there are lower carbon benefits, resulting in a lower optimal AL 

239 compared to wetter conditions where a higher AL is optimal (Westoby, Cornwell, & Falster, 

240 2012). Given that trees within an individual species can grow along relatively broad 

241 environmental gradients, this can result is significant intraspecific allocational changes to AL 

242 depending on local environmental conditions (L. D. L. Anderegg & HilleRisLambers, 2016; 

243 DeLucia, Maherali, & Carey, 2000; Martinez-Vilalta et al., 2009; Mencuccini & Bonosi, 2001; 

244 Mencuccini & Grace, 1994; Pinol & Sala, 2000; Rosas et al., 2019), and is likely a driver behind 

245 the large intraspecific variation in AL:BA observed across in the BAAD (Fig. 1).
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246 To demonstrate the impact of allocation to leaves on tree level productivity, we used the 

247 HOTTER model with input atmospheric vapor pressure deficit (VPD, a metric of atmospheric 

248 dryness), soil water content, and atmospheric CO2 concentration. We ran simulations varying 

249 AL:AS under two environmental regimes: a drier environment (VPD = 1500 Pa and soil water 

250 potential (Ψsoil) = -0.6 MPa) and a wetter environment (VPD = 1000 Pa and Ψsoil = -0.3 MPa). 

251 All other traits, tree size, and atmospheric CO2 were kept constant. In the case where AL:AS 

252 determined based on the ‘optimal’ AL:AS for the wetter environment (i.e., the AL:AS that 

253 maximized instantaneous tree carbon gain per respiratory and turnover costs given the wetter 

254 environment), but the tree was experiencing the drier environment, such as might be the case if 

255 the allocation functional relationship were derived from trees in a wet environment and applied 

256 to modeling tree allocation in a drier environment, the tree overallocated to AL by almost twofold 

257 relative to the optimum, resulting in a potential ~35% loss of plant carbon gain due to extra 

258 respiratory costs and stomatal closure (Fig. 3). 

259 Critically, tree-level responses in productivity resulting from AL:AS and local 

260 environmental conditions significantly affect total ecosystem water fluxes and carbon gain. As 

261 an illustrative example of the consequences of fixed allometries in hydraulically enabled models 

262 for ecosystem-level carbon predictions, we used site-specific allometry to constrain the leaf 

263 allocation strategy of aspen trees growing across a resource gradient between central Alaska and 

264 central Canada. We used the ED2 model (Trugman et al., 2016), a cohort-based vegetation 

265 model with an explicit representation of plant hydraulic processes designed to run at spatial 

266 scales ranging from a flux tower footprint to regional scales (Medvigy, Wofsy, Munger, 

267 Hollinger, & Moorcroft, 2009; Medvigy & Moorcroft, 2012). We performed two separate 

268 simulations forced with identical climate over a 200-year spin up, but we varied the allometric 

269 relationship between dbh and leaf biomass according to two different allometries, one derived 

270 from trees sampled in a drier location in central Alaska (Yarie, Kane, & Hall, 2007) and one 

271 derived from trees sampled in a wetter location in central Canada (Bond-Lamberty et al., 2002). 

272 Depending on the allometric constraints used, ED2 predicted either rapid biomass accumulation 

273 within the first 50 years to a stable forest basal area (a metric of forest density) of ~27 cm2 m-2, 

274 compared to a much slower biomass accumulation rate over the multi-century period with a 

275 maximum accumulated basal area of 20 cm2 m-2 (~30% lower) at the end of the simulation (Fig. 

276 4). While particularly important in models that include plant hydraulics, this central role of 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

277 allometric equations in influencing carbon pools and fluxes is visible in a wide range of models 

278 and ecosystems and has been identified as a major source of model uncertainty in response to 

279 elevated CO2 concentrations (De Kauwe et al., 2014; Walker et al., 2014).

280

281 Plant hydraulics in mechanistic vegetation models

282 As illustrated by the HOTTER and ED2 vegetation models above, plant water transport 

283 links the carbon costs and benefits of plant allocation strategy. Thus, the representation of water 

284 transport in mechanistic models is the scaffolding upon which allometric schemes feedback to 

285 influence modeled plant water stress. Many large-scale vegetation models represent the plant 

286 physiological response to supply- and demand-driven water stress using two distinct pathways 

287 rather than explicitly representing plant hydraulic transport along the soil-plant-atmosphere 

288 continuum (see Sperry & Love, (2015), Fatichi (et al., 2016), and Mencuccini et al., (2018) for 

289 detailed reviews of the representation of plant water stress and water transport). Physiological 

290 responses to supply-driven soil moisture stress are represented in many vegetation models using 

291 an empirical factor based on soil moisture and root biomass that down-regulates either 

292 photosynthesis or stomatal conductance as soil water decreases below field capacity (Trugman, 

293 Medvigy, Mankin, & Anderegg, 2018). Demand-driven water stress responses are represented 

294 through an empirical equation that captures the observed relationships between stomatal 

295 conductance and environmental drivers, typically humidity or vapor pressure deficit, CO2 

296 concentrations, and photosynthesis (Ball, Woodrow, & Berry, 1987; Leuning, 1995). 

297 Importantly, the treatment of supply- and demand-driven limitations as separate pathways 

298 influencing water use is unlikely to capture the complex and nonlinear joint influence on 

299 stomatal conductance through leaf water potential (Sperry et al., 2017).

300 Vegetation models that do resolve the plant physiological response to water stress use 

301 several tissue-level plant hydraulic traits of roots, stems, and leaves, including saturated xylem 

302 hydraulic conductivity and the water potential at 50% loss of conductivity. With a resistor-based 

303 representation of water transport and a connection between leaf water stress and stomatal 

304 conductance (Fig. 2), hydraulically-enabled vegetation models mechanistically link tissue-level 

305 stresses to ecosystem-level carbon and water fluxes (Christoffersen et al., 2016; Kennedy et al., 

306 2019; Xu et al., 2016). Coupling of plant hydraulic transport to gas exchange at the stomata can 

307 be done either using an empirical function where stomatal conductance is parameterized as a 
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308 function of leaf water potential, in a manner similar to that of the empirical soil moisture stress 

309 function above, or via optimization approaches. A recently-proposed “carbon maximization” or 

310 “gain-risk” optimization that explicitly balances the benefit of additional photosynthesis against 

311 the risk of hydraulic dysfunction from falling water potentials (Eller et al., 2018; Sperry et al., 

312 2017; Wolf et al., 2016) has yielded predictive improvements of water and carbon fluxes at leaf 

313 and whole-tree scales, particularly during drought. This gain-risk approach coupled with tissue-

314 level hydraulic traits to explicitly predict internal plant moisture stress (water potential) exceeds 

315 the accuracy of standard empirical models and other optimization approaches (Wang et al. 2019; 

316 Anderegg et al., 2018; Venturas et al., 2018), suggesting that optimization approaches based on 

317 hydraulic risk provide a rigorous predictive method for improving predictions of carbon, water, 

318 and energy fluxes.

319 Despite recent improvements, current state-of-the-art representations of plant hydraulic 

320 processes in vegetation models have yet to widely consider how the empirical constraint of fixed 

321 allometric traits further affects water relations and productivity. These allometric constraints on 

322 AL:AS are particularly important when considering that the new representation of plant water 

323 relations results in plant water stress varying on sub-hourly scales with leaf water potential (Xu 

324 et al., 2016), rather than monthly time scales with soil moisture (Powell et al., 2013; Trugman, 

325 Medvigy, et al., 2018). Short temporal variations in water stress impact predictions of sub-hourly 

326 carbon fluxes. Thus, because allocation to AL:AS is integral in determining leaf-level gas 

327 exchange and Ci, a flexible allocation strategy to AL:AS that considers local water availability is 

328 of critical importance to capturing vegetation dynamics and terrestrial carbon, water, and energy 

329 fluxes.

330

331 Flexible allocation approaches

332 A number of vegetation models of varying scales have made progress towards allocation 

333 strategies that are flexible in response to resource limitation, some even in the context of plant 

334 hydraulics. In general, there are two main methodologies for representing flexible allocation in 

335 mechanistic models. One method adjusts allocation coefficients depending on the strongest 

336 resource limitation. The second type of approach, optimization-based approaches, seek to 

337 maximize some proxy of fitness, such as productivity (e.g. Fig. 3) or reproductive success 

338 (Farrior, Dybzinski, Levine, & Pacala, 2013) given different key resource limitation axes. Within 
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339 the two broad categories of flexible allocation approaches, individual vegetation model 

340 implementations vary significantly. In this section, we highlight a few key examples of flexible 

341 allocation from both resource-seeking and optimization-based models along different limitation 

342 axes including light, water, and nutrients. We include further analyses of flexible allocation 

343 schemes in Table 3.

344 The Adaptive Dynamic Global Vegetation Model (aDGVM) is one example of a large-

345 scale vegetation model that represents allocation such that tissue biomass partitioning is 

346 responsive to environmental conditions. In aDGVM, light-limited trees preferentially allocate to 

347 stem (D. A. King, 1994), water limited trees preferentially allocate to roots, and 

348 photosynthetically-limited trees preferentially allocate to leaves (Table 3). Flexible allocation is 

349 achieved using empirical light- and water-limitation factors based on the relative height of a 

350 plant and its surrounding competitors and weighted soil moisture within the rooting zone, 

351 respectively (Scheiter & Higgins, 2009). Unstressed allocation (when light and water are not 

352 limiting) is defined using fixed coefficients dependent on PFT-specific photosynthetic pathway 

353 (e.g. C3 or C4).

354 The Terrestrial Regional Ecosystem Exchange Simulator (TREES) is a stand-scale 

355 vegetation model that integrates carbon uptake and allocation with plant hydraulic limitations 

356 (Table 3). TREES uses the soil-plant water transport model first described in Sperry et al., 

357 (1998) and explicitly couples plant hydraulics to photosynthesis and leaf carbon allocation 

358 through its leaf turnover function, which relates leaf mortality rate to lateral stem proportional 

359 loss of conductivity (Mackay et al., 2015). Given that a fixed amount of total available carbon is 

360 allocated to stem, and that leaf turnover rate varies depending on plant hydraulic stress, this 

361 allocation scheme decreases AL from a predetermined initial value that is dependent on site-

362 specific allometries in response to hydraulic impairment. Using this leaf turnover scheme that is 

363 responsive to hydraulic stress, TREES was able to accurately captured AL dynamics and species-

364 specific differences in semi-arid piñon pine and juniper forests in the southwestern United States 

365 (Mackay et al., 2015).

366 Though computationally more intensive, optimization-based approaches that account for 

367 both the morphological and physiological facets of plant above- and below-ground allocation 

368 responses to resource stress provide a promising alternative to fixed allometric approaches 

369 because the optimization allows for allocation to be predicted from plant functional traits and 
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370 environment (Sperry et al., 2012). In the context of light limitation, the Community Land Model 

371 Functionally Assembled Terrestrial Ecosystem Simulator (CLM-FATES) model utilizes an 

372 annualized optimization-based “trimming” factor that allows for removal of leaves in negative 

373 carbon balance within the canopy if the annual maintenance cost of the lowest leaf layer is less 

374 than the carbon gain (Lawrence et al., 2018). This trimming approach is present in a number of 

375 vegetation models (Table 3). 

376 In the context of water limitation, Magnani, Mencuccini, & Grace, (2000) developed one 

377 of the first tree-level models that integrates plant hydraulics to test the hypothesis that age-related 

378 declines in forest productivity are driven by allocational shifts to leaves, stem, and fine roots 

379 associated with tree height changes. In their model, Magnani, Mencuccini, & Grace, (2000) 

380 optimize allocation of carbon to conductive sapwood and absorbing root tissues to minimize 

381 whole-plant leaf-specific hydraulic resistance while maximizing leaf-tissue. Thus, to avoid 

382 negative water potentials as a tree grows taller, plant allocation shifts from leaves to transport 

383 tissues because resistance to water transport through the tree stem is proportional to tree height, 

384 so transport tissue must increase more rapidly that leaf tissue with height. This size-dependent 

385 allocation scheme based on plant hydraulic constraints has been implemented in a version of 

386 Lund–Potsdam–Jena (LPJ) vegetation model (Hickler, Prentice, Smith, Sykes, & Zaehle, 2006; 

387 Zaehle et al., 2006) (Table 3). A number of other optimization studies have used the concept of 

388 ecohydrological equilibrium, where allocation to leaves and roots is assumed to be in equilibrium 

389 with water availability (Eagleson, 1982; Westoby et al., 2012). The ecohydrological equilibrium 

390 framework has successfully reproduced observed trends in AL and root distributions across 

391 environmental gradients (Cabon, Martínez-Vilalta, Martínez de Aragón, Poyatos, & De Cáceres, 

392 2018; Schymanski, Sivapalan, Roderick, Beringer, & Hutley, 2008; Yang, Medlyn, De Kauwe, 

393 & Duursma, 2018).

394  Further, optimization approaches that account for multiple resource limitations have 

395 been implemented, particularly in the context of nutrient and light limitation (Dewar, Franklin, 

396 Mäkelä, McMurtrie, & Valentine, 2009; Rastetter & Shaver, 1992). For example, in the simple 

397 vegetation model ACONITE (Analyze Carbon and Nitrogen Interactions in Terrestrial 

398 Ecosystems), Thomas & Williams, (2014) account for the productivity tradeoffs associated with 

399 allocating carbon and nitrogen to different tissues (Table 3). The ACONITE allocation scheme is 

400 executed through a relatively complex multi-timescale optimization: At each daily time step, 
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401 instantaneous carbon return is calculated to determine whether investing further carbon and 

402 nitrogen in foliage will result in a positive carbon net uptake (up to some maximum leaf carbon 

403 which is set on an annual timescale). If the maximum leaf allocation has been reached or 

404 nitrogen limits further leaf allocation, carbon is allocated to fill storage, grow wood, or increase 

405 fine roots. Further surplus carbon is allocated for nitrogen fixation. At the end of each annual 

406 cycle, integrated annual marginal carbon return is use to recompute maximum leaf carbon and 

407 nitrogen and maximum root carbon and nitrogen. Thus, at each timestep, ACONITE computes 

408 the marginal changes to photosynthesis from added leaf carbon, added leaf nitrogen, and added 

409 leaf carbon and nitrogen together, to determine an appropriate allocation strategy.

410

411 Frontiers in allocation prediction

412 In this section, we expand the understanding of allocation drawn from the vegetation 

413 hydraulic framework to comment broadly on the global optimization problem of allocation to 

414 plant tissues in the presence of multiple resource constraints. Specifically, we highlight current 

415 questions arising from flexible allocation schemes, including limitations of both resource-

416 seeking approaches and optimization-based approaches. Concomitantly, we suggest several ways 

417 forward to improve the representation of allocation in vegetation models. 

418 Current resource-seeking implementations of flexible allocation still face challenges 

419 associated with (a) quantifying the degree and costs of light, water, and nutrient limitation, and 

420 (b) uncertainty associated with physiological parameters such as root hydraulic resistance, which 

421 can be treated as model calibration factors rather than an observationally-constrained biological 

422 traits. As a result, a number of vegetation models with resource-seeking allocation effectively 

423 trade empirical allometric allocation factors (based on site-specific, but field-measured 

424 allometric relationships) for empirical cost factors that may be loosely rooted in limitation 

425 mechanisms, such as soil water/nutrient availability or relative tree height of competitors (Table 

426 3). Such tradeoffs should be undertaken with caution because the empirical cost factors are 

427 difficult to validate using field measurements and are unlikely to capture any nonlinear changes 

428 in allocation responses to resource scarcity, as might be expected in out of sample environmental 

429 conditions. Further, most resource-limitation schemes still rely on fixed coefficients to define 

430 allocational strategies under unstressed conditions (Krinner et al., 2005; Lawrence et al., 2018; 

431 Mackay et al., 2015; Scheiter & Higgins, 2009). 
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432 Key challenges to address in advancing flexible allocational schemes in vegetation 

433 models will be to: (1) limit additional free parameters, (2) tie the mechanisms underlying flexible 

434 allocation to known aspects of plant physiology such as plant functional traits, (3) assess whether 

435 any increases in model complexity towards a more physiological accurate representation of 

436 biomass allocation are justified based on model performance. In particular, the universal problem 

437 of equifinality (many parameter choices yielding similar model behavior) in vegetation models 

438 with many unconstrained or poorly constrained parameters emphasizes the need to implement 

439 parsimonious allocation schemes driven by parameters that can be constrained by observations 

440 (Tang & Zhuang, 2008). Otherwise, flexible allocation schemes may fit training data well yet not 

441 beat simplistic but empirically constrained fixed allocation schemes when considering multiple 

442 measures of model prediction skill.

443 Recent advances in the field of plant hydraulics provide several examples of methods to 

444 mechanistically quantify costs of scarce resource limitation that are informative to the flexible 

445 allocation problem. For example, Mackay et al., (2015) accelerated leaf shedding in response to 

446 water limitation as a function of lateral stem proportional loss of conductivity and Sperry et al., 

447 (2017) defined a hydraulic damage risk function based on the fractional loss of plant hydraulic 

448 conductance. Though these approaches are not fully mechanistic, they offer potential 

449 improvements that connect hydraulic mechanisms to allocation and damage costs experienced by 

450 plants. Additionally, the cost functions associated with hydraulic conductivity or conductance 

451 have performed well when tested against diverse allocational and physiological observational 

452 datasets (Eller et al., 2018; Mackay et al., 2015; Sperry et al., 2017; Venturas et al., 2018). 

453 Optimality approaches show significant promise for predicting the interaction between 

454 plant biophysics and environment and have been implemented in the context of plant hydraulics, 

455 as illustrated by the HOTTER model example (Trugman et al., 2019), and for multiple resource 

456 limitations (i.e. Rastetter & Shaver, 1992; Farrior et al., 2013; Thomas & Williams, 2014; 

457 Dybzinski et al., 2015) in simple models. However, the calculation of the marginal costs and 

458 benefits associated with allocation tradeoffs can be extremely computationally expensive. 

459 Further, the implementation of optimized allocation brings up a number of plant physiological 

460 questions that are currently unknown (Dewar et al., 2009). Particularly, how rapidly can plants 

461 adjust allocation? How does environmental variability factor into plant allocation strategy? How 

462 does competition impact allocation strategy (i.e. Falster & Westoby, 2003; Farrior et al., 2013; 
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463 Dybzinski et al., 2015)? How do plants reconcile short-term and long-term tradeoffs such as 

464 sacrificing height-growth, which increases short-term carbon gain but ultimately leads to a long-

465 term competitive disadvantage (Buckley & Roberts, 2006; D. King, 1981)? 

466 Given the significant advantages of optimality principles, but substantial computational 

467 tradeoffs, hybrid approaches that utilize carbon-balance optimization techniques to define 

468 resource cost functions associated with allocation to different tissues under varying resource 

469 constraints could prove to be computationally more feasible and avoid drawbacks associated 

470 with determining the appropriate optimization timescale. For example, allocation routines could 

471 calculate marginal changes in plant fitness (such as carbon gain) in response to increased 

472 allocation to leaf, root, and stem tissue given a fixed resource availability, similar to the size-

473 based approach in (Zaehle et al., 2006), as illustrated in Fig. 5. 

474

475 Conclusions

476 Overall, we now have the tools to tackle allocation broadly in the presence of multiple 

477 limiting resources. In particular, cohort-based vegetation models allow us to tackle the impacts 

478 of light limitation on allocation (Fisher et al., 2018; Lawrence et al., 2018). Vegetation models 

479 that incorporate plant hydraulics (Christoffersen et al., 2016; Kennedy et al., 2019; Xu et al., 

480 2016) give us an increased ability to understand how water limitation impacts allocation. Models 

481 that include microbe-mediated biogeochemistry and competition for nitrogen and phosphorus 

482 allow us to predict nutrient limitations on allocation and growth (Medvigy et al., 2019). Though 

483 these connections are not yet fully realized, they represent a promising area of future 

484 development.
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782

783 Tables

784 Table 1: Allocation and vegetation hydraulics characteristics in select vegetation models of 

785 diverse scales

Model Type Dynamic 

vegetation?

Plant 

hydraulics?

Leaf allocation Reference

ACONITE Big leaf N N Flexible (Thomas & Williams, 2014)

aDGVM Individual Y N Flexible (Scheiter & Higgins, 2009)

CABLE Big leaf N N Fixed (Wang et al., 2011)

CLM4 Big leaf N N Fixed (modified) (Oleson et al., 2010)

CLM5 Big leaf N Y Fixed (modified) (Lawrence et al., 2018)

CLM-FATES Cohort Y N Flexible (Lawrence et al., 2018)

ED2 Cohort Y N Fixed (Medvigy et al., 2009)

ED2-hydro Cohort Y Y Fixed (Xu, Medvigy, Powers, 

Becknell, & Guan, 2016)

Hybrid 3.0 Individual Y N Flexible (Friend, Stevens, Knox, & 

Cannell, 1997)

JeDi-DVGM Big leaf Y N Fixed (Pavlick, Drewry, Bohn, 

Reu, & Kleidon, 2013)

LM3-PPA Cohort Y N Fixed (modified) (Weng et al., 2015)

LPJ-DVGM Cohort Y N Flexible (Sitch et al., 2003)

LPJ-Magnani 

Hybrid

Cohort Y N Flexible (Magnani, Mencuccini, & 

Grace, 2000; Zaehle et al., 

2006)
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ORCHIDEE Big leaf Y N Flexible (Friedlingstein, Joel, Field, 

& Fung, 1999; Krinner et 

al., 2005)

SEIB-DGVM Individual Y N Flexible (Sato, Itoh, & Kohyama, 

2007)

TREES Individual N Y Flexible (Mackay et al., 2015)

786

787

788 Table 2: Fixed allocation models

Model Detailed description of leaf allocation

CABLE Big leaf model with fixed allocation coefficients. Annual NPP productivity is determined from 

annual carbon assimilation corrected for respiratory losses. The growth/decay of biomass 

during the steady state part of the growing season is determined by partitioning of NPP 

between leaves, roots and wood according to PFT-specific fixed coefficients. 

CLM4 Big leaf model with a modified version of fixed allocation coefficients. After accounting for 

the carbon costs maintenance respiration, remaining photosynthetic carbon can be allocated to 

new growth. Allocation to new growth is calculated for all of the plant carbon and nitrogen 

state variables based on specified C:N ratios for each tissue type and allometric parameters 

that relate allocation between various tissue types. Leaf carbon allocation is a dynamic 

function of NPP where the ratio of new to stem to new leaf growth (a) is

,� =
2.7

1 + exp ( ― 0.004��� ― 300)
―0.4

where NPP an annual value summed over the previous year. This results in increased woody 

allocation in high NPP environments.

CLM5 Big leaf model with a modified version of fixed allocation coefficients. After accounting for 

the carbon costs maintenance respiration, remaining photosynthetic carbon can be allocated to 

new growth. Allocation to new growth is calculated for all of the plant carbon and nitrogen 

state variables based on specified C:N ratios for each tissue type and allometric parameters 

that relate allocation between various tissue types. Leaf carbon allocation is a dynamic 

function of NPP where the ratio of new to stem to new leaf growth (a) is

 

 ,� =
2.7

1 + exp ( ― 0.004��� ― 300)
―0.4

where NPP is an annual value summed over the previous year. This results in increased woody 

allocation in high NPP environments.
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ED2 Cohort-based model. After accounting for respiration costs, remaining photosynthetic carbon 

can be allocated to new growth. During the steady state part of the growing season, allocation 

is determined by a functional relationship dependent on cohort dbh and PFT-specific leaf-dbh 

biomass relationships

,�� = � ∙ ��ℎ�
where bl is leaf biomass and a and b are fixed PFT-specific constants.

ED2-hydro Cohort-based model. After accounting for respiration costs, remaining photosynthetic carbon 

can be allocated to new growth. During the steady state part of the growing season, allocation 

is determined by a functional relationship dependent on cohort dbh and PFT-specific leaf-dbh 

biomass relationships

,�� = � ∙ ��ℎ�
where bl is leaf biomass and a and b are fixed PFT-specific constants.

JeDi-DVGM Big leaf model where carbon allocation to each tissue pool is proportional to the size of the 

storage pool. Allocation is determined by fixed coefficients that are PFT-specific, range from 

0 to 1, and are mathematically constrained such that they sum to less than 1. The allocation 

coefficient fraction is designed to represent functional trade-offs in allocation: A higher 

allocation to fine roots enhances plant water uptake ability, but this comes at the expense of 

allocation to the above-ground tissues, decreasing the ability to capture light for 

photosynthesis.

LM3-PPA Cohort-based model where empirical allometric equations that are PFT-specific and dependent 

on cohort dbh relate woody biomass (including coarse roots, bole, and branches), crown area, 

and stem diameter. Another set of fixed equations relate leaf mass to crown area and root mass 

to leaf mass. The target crown LAI that is set by PFT-specific equations and cohort light status 

(e.g. understory versus overstory).

789

790

791 Table 3: Flexible allocation models

Model Detailed allocation description

ACONITE Big leaf model. At each daily time step, instantaneous carbon (C) return is calculated (which 

accounts for  gross photosynthesis, growth respiration, and maintenance respiration of 

additional leaf allocation) to determine whether investing further C and nitrogen (N) in 

foliage will result in a positive C net uptake (up to some maximum leaf carbon which is set 
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on an annual timescale). If the maximum leaf allocation has been reached or N limits further 

leaf allocation, C is allocated to fill storage, grow wood, or increase fine roots. Further 

surplus C is allocated for fixation. At the end of each annual cycle, integrated annual 

marginal carbon return is use to recompute maximum leaf C and N and maximum root C and 

N. The marginal changes to photosynthesis from added leaf C, added leaf N, and added leaf 

C and N together are iterated over using to determine the marginal carbon return.

aDGVM Individual-based mode. After covering respiratory costs, carbon is allocated to root, stem, or 

leaf in response to limiting resources (i.e. light-limited trees preferentially allocate to stem, 

water limited trees preferentially allocate to roots, photosynthetically-limited trees 

preferentially allocate to leaves). Thus, allocation is responsive to environmental conditions 

according to the following relations: 

, , ,�� =
1 + �0� ― ��

3 + �0� + �0� ― �� ― �� ― �� �� =
1 + �0� ― ��

3 + �0� + �0� ― �� ― �� ― �� �� =
1 ― ��

3 + �0� + �0� ― �� ― �� ― ��
where  aR, aS and aL describe carbon allocated to roots, stems and leaves, respectively, a0R, 

a0S, and a0L, describe the fractions of carbon allocated to roots, stems and leaves when 

resources are not limiting. Qi ranges from 0 to 1 (where 1 is no light limitation) and describes 

the light status of the plant and is based on the relative height of a given plant and its 

competitor. Gi is the weighted mean soil moisture index of all soil layers that a plant’s roots 

have access to. Ci describes the deviance of leaf biomass from the fraction of leaf biomass in 

the nonlimiting case.

CLM-FATES Cohort-based model where photosynthetic carbon is allocated according to the following 

hierarchy: Priority is given to maintenance respiration, followed by tissue maintenance and 

storage, then allocation to live biomass and then to the expansion of structural and live 

biomass pools. The maximum carbon allocation to leaf biomass and other tissues is 

determined using allometric constants, a scheme based on the ED model. However, target 

leaf biomass includes an optimization based “trimming” factor that allows for removal of 

leaves in negative carbon balance within the canopy due to light limitation. If the annual 

maintenance cost of the lowest leaf layer is less than the carbon gain, the canopy is trimmed 

by an increment which is applied up through the next calendar year.

Hybrid 3.0 Individual-based model. If annual net carbon balance is positive (after allowing for carbon 

required to cover respiration and turnover costs), this carbon is allocated to new growth and 

growth respiration. Allocation occurs assuming (i) a fixed allometric relationship between 

diameter at breast height and woody carbon mass, (ii) that leaf area is linearly proportional to 

sapwood area at breast height, and (iii) that there is a fixed ratio between leaf and fine root 

masses. Allocation coefficients are PFT specific. The carbon balance of the lowest leaf layer 
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of each tree crown is calculated daily. If, at the end of each year, carbon balance is negative, 

the leaf area is reduced by the amount present in the bottom leaf layer This results in the 

foliage area being optimized on an annual timestep based on carbon gain.

LPJ-DVGM Cohort-based model. After accounting for maintenance and growth respiration and annual 

reproductive costs, the remaining carbon is available for producing new tissue. Scaling rules 

constrain allocation among leaves, fine roots and sapwood. First, leaf area is related to 

sapwood area through a constant. Second, rooting biomass is related to leaf biomass through 

a fixed coefficient and a water limitation factor that is an annual average value ranging 

between 0 and 1 that is used in calculating this year's leaf to fine root mass ratio for the 

allocation routine. Thus, water-limited environments require plants to allocate relatively more 

resources to fine root biomass compared to leaves. This results in increased respiration costs 

associated with roots and a loss of photosynthetic potential as the cost of having to acquire 

water and nutrients.

LPJ-Magnani 

Hybrid

Cohort-based model where allocation of carbon to conductive sapwood and absorbing roots is 

optimal with respect to achieving minimal whole-plant leaf-specific hydraulic resistance 

whilst supporting a maximum of transpiring leaf-tissue. Increased allocation to fine roots 

with tree height decreases below-ground plant hydraulic resistance which compensates for 

the increase in leaf-specific resistance of the stem with tree height, maintaining a constant 

whole-plant leaf-specific hydraulic conductance. Increasing respiratory costs relative to 

carbon gain to maintain whole-plant leaf-specific hydraulic conductance with increasing tree 

height reduces growth efficiency, resulting in a decline in productivity. 

 ORCHIDEE Big leaf model where carbon is allocated to root, stem, and leaf in response to limiting 

resources (i.e. water, light, nitrogen): water, light, and nitrogen availability. No carbon is 

allocated to leaves when the LAI is above a PFT-specific annual maximum. Allocation is 

specified as:

,�� = 3�0� �� + 2min (�,�), �� = 3�0� min (�,�)2� + min (�,�), �� = 1 ― �� ― ��
where aR, aS and aL describe carbon allocated to roots, stems and leaves, respectively, a0R, 

and a0S describe the fractions of carbon allocated to roots and stems when resources are not 

limiting. Both a0R, and a0S are set to 0.3, giving a leaf allocation of 0.4 under conditions 

where resources are totally non-limiting. Resource availabilities of Light (L), water (W), and 

nitrogen (N) range from 0.1 (severely limited) to 1.0 (readily available) where W is dependent 

on monthly soil water content, L is dependent on canopy LAI, and N is assumed to be a 

function of soil temperature and soil moisture.

SEIB-DGVM Individual-based model where growth and allocation occur at three separate time scales. At 

the daily time scale, after respiratory costs are accounted for, leaf and fine root turnover is 
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replenished according to fixed ratios between leaf and fine root biomass. Leaf biomass is 

constrained by two functional relationships based on fixed, PFT-specific coefficients and 

carbon availability. Functional relationships include maximum crown surface area and 

maximum cross-sectional area of sapwood. Trunk growth and expansion of crown area occur 

at the monthly timescale according to fixed constants and PFT-specific allometric 

relationships. At the annual-level, the height of the lowest branch increases as a result of self-

pruning of the bottom of the crown layer. During pruning, a maximum of 10 crown disks can 

be pruned at one time, each at a depth of 10cm. Crown disks are purged based on the 

expected profit (carbon gain) of a particular crown disk. 

TREES Individual-based model. After accounting for respiration costs, remaining photosynthetic 

carbon can be allocated to new growth. Leaf turnover is dependent on hydraulic impairment 

of the lateral stem:

,�� = { �0�,  �� ≥ 0.5 ∧ ��� ≤ �������0�,  �� < 0.5 ∧ ��� > ����
where L0 is initial leaf area index, M is unstressed leaf mortality rate, PL is lateral stem 

proportional loss of conductivity, and cls and clrs are, respectively, and the Weibull c 

parameters for the lateral stem and the lateral shallow root. Allocation to stem is fixed. 

792

793 Figure Captions

794

795 Figure 1. Taxonomic scales of variation in leaf area divided by tree basal area (AL:BA) 

796 compared to another widely-used plant functional trait, wood density (WD), recorded in the 

797 Biomass and Allometry Database for woody plants (Falster et al., 2015) and the Global Wood 

798 Density Database (Zanne et al., 2009). Horizontal dashed line represents the fraction of within-

799 species variation in AL:BA explained by plant height.  

800

801 Figure 2.  Leaf allocation and gas exchange jointly affect plant productivity. (a) Model scheme 

802 of plant hydraulic transport, illustrated per standard electrical resistance diagrams with 

803 conductivity (K=1/resistance) and water potential of soil, stem and leaf (Ψ) under normal 

804 conditions. (b) Schematic of possible plant physiological adjustments at the leaf- and stem-level 

805 made in response to increased leaf water demand under water-limited conditions. (c) Changes in 

806 Ci and stomatal conductance with increasing allocation to leaf area relative to water transport 
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807 tissue (AL:AS). Note that these trends are for a tree modeled using a single resistor representing 

808 whole-plant hydraulic transport up to the substomatal cavity and a hydraulic optimization-based 

809 stomatal conductance model (Trugman, Detto, et al., 2018). Given multiple resistances specific 

810 to roots, stem, and leaves, trends are broadly similar but exhibit a delay the predicted declines in 

811 stomatal conductance (gs) and intercellular CO2 (Ci) with increased AL:AS (Hubbard et al., 2001; 

812 Sperry, 2000). (d) Whole-tree gross primary productivity (GPP) and carbon costs associated with 

813 respiration and turnover with increased AL:AS. (e) Total whole plant carbon gain (photosynthesis 

814 minus respiration and turnover costs). Maxima indicates the maximum tree carbon gain given 

815 fixed environmental conditions. 

816

817 Figure 3. Tree fitness quantified through whole tree carbon gain (photosynthesis minus 

818 respiration and turnover costs) for trees of the same size under wet (solid green lines) and dry 

819 (solid tan lines) conditions. Maxima indicate the maximum tree carbon gain given fixed 

820 environmental conditions and photosynthesis and hydraulic traits. Individual variation in carbon 

821 gain can occur through adjustment of allocation to leaf area relative to water transport tissue 

822 (AL:AS) to adapt to changes in water availability. Local optima for AL:AS for trees with identical 

823 traits but either in wetter or drier conditions are indicated with dashed vertical lines of the same 

824 color. These fitness curves were generated using the HOTTER model (Trugman, Detto, et al., 

825 2018).

826

827 Figure 4. Empirical representations of leaf allocation can result in substantial uncertainty in 

828 predictions for plant biomass accumulation depending on the local climatic conditions. 

829 Ecosystem Demography model version 2 (ED2)-predicted aspen basal area accumulation over a 

830 200-year spin up for trees with two different site-specific leaf allometries, one derived from trees 

831 sampled in central Alaska (Yarie et al., 2007) and one derived from trees sampled in central 

832 Canada (Bond-Lamberty et al., 2002), that constrain tree leaf carbon allocation strategy. This 

833 figure illustrates how model predictions can vary dramatically based on the allometric constraints 

834 used for simulations, highlighting the need for a more holistic understanding of leaf allocation.

835

836 Figure 5. Schematic of expected allocational responses to various resource limitations and 

837 impacts of allocation strategy on marginal plant fitness increase. (a) Expected changes in root, 
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838 leaf, and stem allocation in response to increased competition for light, decreased soil water 

839 availability, and decreased nutrient availability. Pluses combined with solid lines indicate 

840 increased carbon allocation to a given tissue and minuses combined with dashed lines indicate 

841 decreased allocation. (b) Schematic of fitness as a function of relative carbon allocation (in 

842 percent) to leaf, root, and stem tissue including a hypothetical optimum for a given set of local 

843 environmental conditions. Solid arrows indicate directional shifts in relative allocation in 

844 response to increased water availability, decreased nutrient availability, and decreased light 

845 availability. 
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